The Ring Nebula (M57)

By Ernie Jacobs, Astronomer

One of the goto targets for summertime stargazing is M57, the Ring Nebula. Located in the constellation Vega, it’s relatively easy to find and is visible in most equipment used by amateur astronomers. The Ring Nebula has been featured prominently in promotional material for our upcoming (July 29th) Astronomy Night at Penn Dixie. So what is it? What’s with the “M57” thing? Where is it? What can be expected when looking through the eyepiece?

Deep Space Objects
The Ring Nebula is what astronomers refer to as a Deep Space Object or DSO. Basically a DSO is any object beyond our solar system (something other than the Sun, Moon or the Planets). Galaxies, Nebula, and Star Clusters are all examples of various types of DSOs. The Ring Nebula belongs to a type of DSOs known as Planetary Nebulae. There are a few types of Nebulae: Reflection, Emission, and Planetary. Planetary Nebulae are the remnants of stars similar in size to our Sun. Stars up to about eight times the mass of our Sun are too small to explode in a Supernova at the end of their lives. Once the stars can no longer fuse Hydrogen or Helium, the star sheds it’s outer layers of gas.

A hot dense ember known as a White Dwarf is all that remains of the star and the expelled outer layers are ionized by the this White Dwarf remnant, creating the object that we view. So why are they called Planetary Nebulae? Do they have anything to do with planets? When they were originally discovered, astronomers had no idea of their true nature. In the telescopes of the time (eighteenth, nineteenth centuries) they appeared very similar to planets. One Planetary Nebulae looks so much like Saturn (NGC 7009) it’s called the Saturn Nebula.

ngc7009_hst
The Saturn Nebula (NGC 7009).  Image Credit: NASA (The Hubble Space Telescope)

Messier’s Catalog
So now we know what the Ring Nebula is and what the “Nebula” part means in the name. What’s the deal with the “M57” thing? Well the Ring Nebula is contained in a Catalog (a list) of objects created by Charles Messier. The “M” refers to Messier and it’s number 57 on the list. Charles Messier was a French Astronomer that lived from 1730 to 1817. He was primarily interested in finding comets, indeed he found several, but ironically he is not known for finding comets. Messier started a list of objects which appeared fixed with respect to the stars, moving each night with stars as opposed to moving through them as comets do. He created the list so fellow comet hunters wouldn’t waste anytime observing these objects. The objects are relatively bright and are therefore easily observed by amateurs and are popular targets at Public Astronomy Nights or Star Parties.

In March/April it is possible to view all 110 objects in one night in what is called a Messier Marathon.

In addition to being well suited for the equipment frequently used by amateur astronomers, M57 is relatively easy to find. It’s located near one of the brightest stars in the summer night sky (Vega), within a prominent summer asterism (the Summer Triangle), and right between the two bright stars Sheliak and Sulafat in the constellation Lyra. These factors make finding the Ring Nebula relatively easy.

Screen Shot 2017-07-24 at 8.55.33 PM
The Ring Nebula (M57) is located in the Summer Triangle, an asterism formed by the stars Vega, Deneb and Altair.  The Summer Triangle can be found in the east after dark.  It will rise higher and higher each night as summer progresses. Image Credit: Stellarium

Time and Distance
So that’s how to find it in the Night Sky, but where is it in relation to Earth? The Ring Nebula is 2,283 light-years from Earth. A light-year is the distance light travels in one year (about 300,000 meters/second or 186,000 miles/second). That is about 5.8 Trillion miles in a year. Space is unimaginably large and requires truly astronomical units of measure. Nothing can exceed this cosmic speed limit. The result of the finite speed of light, is that looking through a telescope is like looking through a time machine. We see these objects not as they are now but how they were. We see the Moon as it was a few seconds ago, the Sun as it was about nine minutes ago, Jupiter as it was about forty five minutes ago, and the Ring Nebula as it was 2,283 years ago. The Ring Nebula, cosmically speaking, is very young at about 7,005 years old.

Screen Shot 2017-07-24 at 9.40.04 PM
The Ring Nebula can be found between the stars Sheliak and Sulafat in the parallelogram shaped constellation Lyra. Image Credit: Stellarium

Our Eyes vs. Telescopes
Finally, it’s time to address the 800 pound gorilla in the room. What will M57 look like when viewed through one of our telescopes? Major spoiler: it will not look like the colorful images like the one used to promote our upcoming event or that can be found in many other forms of media. So what’s going on? Well, to be completely honest, this is one of the greatest challenges the we face with astronomy outreach. With the advent of digital imaging techniques, the Hubble Telescope, & the internet, astronomy has benefited tremendously from the excitement that these amazing images generate. Unfortunately, for some it can be disappointing that what they view through the telescope is not as colorful and detailed as in these images. So what’s going on? Are NASA and astrophotographers tricking us? Is our equipment used for visual observing substandard? The answer to both questions is no. What is needed is an understanding of how both technologies work so that expectations can be properly set.

When observing distant objects through a telescope it is important to understand that it is very difficult to see color in the objects viewed, unless they are very bright. Typically, it is possible to discern colors in the planets (Jupiter, Saturn & Mars for example) and sometimes in the Orion Nebula (M42). In some cases color can be perceived in other objects under favorable viewing conditions (clear and dark sky) with telescopes that have a large aperture. The reason we don’t perceive color when looking through a telescope has to do with the part of the eye we use when observing (cones vs. rods) and our sensitivity/ability to collect light with our eyes. Our eyes are truly amazing, and in no way is this intended diminish their amazing capabilities in any way. The cones are good at detecting color but are not that sensitive. The rods are more sensitive and are therefore able to detect the light. Unfortunately the rods cannot detect colors and have poor resolution.

Additionally, our eyes work much differently than a camera. In some cases this is an advantage. When looking through one of our telescopes at the planet Jupiter, it is common to be able to see Jupiter’s Belts/Bands and the four Galilean moons at the same time. Ours eyes have incredible dynamic range. When imaging Jupiter it is a challenge to capture the details of Jupiter’s clouds and the moons at the same time.  In order to see the details on the planet’s disk, the exposure setting must be low. The consequence is that the moons, which are much dimmer than the planet, may no longer be visible with a lower exposure setting. Increasing the exposure to reveal the moons blows out (over-exposes) the planets surface.

However, cameras do provide a distinct advantage over eyes when it comes to capturing images of distant, faint, and diffuse objects. The camera’s shutter can be left open for extended periods, increasing the amount of photons collected on the camera’s chip.

Understanding Resolution
Let’s perform a little thought experiment to help understand what’s going on. Imagine you have a paper plate resting on a flat surface. Now sprinkle something granular on the plate, grains of sand for example. Do this for a second or two.  How well will the grains of sand cover the plate? When poring the sand out quickly, there won’t be enough grains of sand to thoroughly cover the plate. There will be many places where there is no grain of sand covering the plate and the grains will be non-uniformly distributed over the plate. The plate represents our eye or the camera sensor. The grains of sand represent the photons of light from a distant object.

Now lets repeat this experiment. This time increase the amount of time that the sand is poured onto the plate, let’s say a minute or two. Now the plate has collected more photons and there are significantly less gaps if any. This is why photographs of astronomical objects can show so much more detail and color. Additionally, there are other techniques of capturing the images and processing that impact the color of the image as well. We won’t get too technical, but the colors in the image may not be what can be seen with our eyes, but the do represent real aspects of the object.

m57
The Ring Nebula. This image was captured by Penn Dixie’s Jim Maroney.  The Ring Nebula will look similar to this image when viewed through a telescope, except it will be gray (no color) and fainter (depending on conditions).

When looking through our telescopes visually (we often have one of our telescopes setup to image during an event) the Ring Nebula will look like a small, faint smoke ring or doughnut, not the spectacular psychedelic image from the Hubble Telescope. However, it’s just as amazing. The light hitting your eyeballs left the Ring Nebula almost 2,300 years ago. What was Penn Dixie like 2,300 years ago — that’s a question for a geologist not an astronomer. What civilizations existed 2,300 years ago? As previously stated, looking through a telescope is like looking back into time. It provides an opportunity  to try to comprehend the incomprehensible vastness of the universe and our humble place in it.

Hope you come out Saturday July 29 and we hope the weather cooperates. We’ll have a nice nearly quarter moon to look at, the planets Jupiter and Saturn, and many DSOs like the Ring Nebula to show you. Additionally, I will be joining our Buffalo Astronomical Association (BAA) colleagues at Wlikeson Pointe on Friday July 28th for some observing at the Outer Harbor.

Clear Skies!

Ernie Jacobs

Astronomy Update – An Evening with a Girl Scout Troop

By Ernie Jacobs

On Saturday June 10th Penn dixie had the pleasure of hosting an outstanding group of young ladies (and their moms) from Troop 31339 from Orchard Park. The troop contacted Penn Dixie to work on their Sky Badge. The special event, marked the first successful astronomy program of the year, the weather was perfect. We took them on a tour of the night sky, identifying various stars, constellations, and we were able to view many awesome celestial objects. We had three telescopes set up, two for visual observing and one for imaging. We also had an opportunity to discuss the upcoming eclipse on August 21st.

Here are few pictures from the evening. Note: All images of celestial objects were captured during the event at Penn Dixie by Penn Dixie’s Jim Maroney.

IMG_3299
Members of the troop trying out eclipse glasses as the Sun was setting. Picture taken by Ernie Jacobs.
final jupiter penn dixie 6_10_17
An image of Jupiter captured during the event. Image was captured and processed by Penn Dixie’s Jim Maroney.
M13 Penn dixie 6_10_17
Messier 13 – The Globular Cluster in the Constellation Hercules. M13 is about 145 light-years across, 25,100 light-years away, and contains several hundred thousand stars. Image captured and processed by Penn Dixie’s Jim Maroney.
mizzar penn dixie 6_10_17
The Visual Double Star Mizar and Alcor located in the handle of the Big Dipper. Mizar itself is actually a quadruple star system and Alcor is a binary star system. Together they comprise a sextuple star system! Image captured and processed by Penn Dixie’s Jim Maroney.

Hopefully this marks an improvement with regard to our luck with the weather. Our next event is this coming Saturday June 17th at 8:30 pm. We hope to see you there!

Clear Skies!

Ernie Jacobs

Transit of Mercury

Text and photos by Ernie Jacobs, Head astronomer

mercury.jpg
Viewing our star and its first planet from the third planet! Several telescopes setup at Penn Dixie to view and capture the images of the May 9th Transit of Mercury.

On May 9th 2016 about 120 people took advantage of the opportunity and the fantastic weather to view the Transit of Mercury. During this event, the solar system’s smallest planet crossed the face of the Sun from our point of view here on Earth. Mercury made a crisp, perfectly round, and completely black image against the bright surface of the Sun, in markd contrast to the irregular and fuzzy sunspots also visible on the surface of the Sun at the same time. The site was open for the event from 7 AM thru 3 PM. We had 3 astronomers available with 6 scopes set up viewing of the event. About 32 guests and 60 3rd graders along with 30 Teachers/Chaperones from Buffalo Public School # 81 were on hand to witness the event.

So exactly what is a Transit? An astronomical transit is when one celestial body like a planet or a moon appears to move across the face of another celestial body, like a star for example, as seen from observer on a particular vantage point (in our case, on Earth). So from our perspective here on Earth, only the planets Mercury & Venus and the Moon can transit the Sun. When the moon passes across the face of Sun we call that a Solar Eclipse. In this case Mercury, the solar system’s smallest planet and the closest planet to the Sun, passed in front of the Sun from 7:12 AM EST to 2:42 PM EST and was visible to observers in the eastern United States and Western Europe. Mercury appeared as tiny black dot 10 arcseconds wide moving across the face of the Sun (about 1/200th the width of the Sun). If Mercury was the same size as the Earth, the tiny dot would only appear 2.6 times larger as it traveled across the face of the Sun.

TransitJM1.JPG
Cropped image of Mercury during the Transit captured by Jim Maroney on his 8″ Celestron Edge HD with CCD camera. Multiple images were captured and stacked in special software to create this image.

How rare are Transits of Mercury? Transits of Mercury occur about 13 or 14 times per century, so they are rare, but nearly as rare as Transits of Venus. The last transit of Mercury was in 2006 and the next one will occur on November 11, 2019. By contrast the next Transit of Venus, which last occurred in 2012, won’t happen until 2117. The 2019 Transit of Mercury will again be visible in the Americas and Europe.

Were any pictures taken? In addition to viewing the event visually thru telescopes with special solar filters. (Never look at the Sun without following the proper precautions!!!) Images of the event were captured. Photos and videos were captured via smartphones thru the eyepiece of on of the telescopes and Jim Maroney (Penn Dixie’s resident astrophotographer) had multiple telescopes setup to capture the event. We even managed to broadcast the transit live on our Facebook page for a few minutes until the battery in my iPhone was completely drained.

TransitofMercury1 copy
Ernie Jacobs captured this image of the event using an iPhone, 8″ Dobsonian Telescope, and a 25 mm Plossl eyepiece. A short video was captured on the iPhone. Software broke the video up into individual images, aligned the images, sorted them for quality, and then stacked the highest quality images to create the final image above.

Did I mention the weather was fantastic?  We couldn’t have asked for a better day, hardly a cloud in the sky.  Clearly as an astronomer, I am better suited for observing at night.  Yes, I spent the whole day outside observing the Sun without putting on any sunscreen, Ouch!

All in all it was a spectacular day.  Thanks to my fellow astronomers Rich Switzer and Jim Maroney for sharing their time and expertise and thanks to the volunteers and staff that helped organize and run the event. Clear Skies!

Ernie Jacobs


Additional images of the transit from Jim Maroney, Astrophotographer 

This slideshow requires JavaScript.